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PREFACE

his is a textbook for the standard introductory differential equations course

taken by science and engineering students. Its updated content reflects the
wide availability of technical computing environments like Maple, Mathematica,
and MATLAB that now are used extensively by practicing engineers and scientists.
The traditional manual and symbolic methods are augmented with coverage also
of qualitative and computer-based methods that employ numerical computation and
graphical visualization to develop greater conceptual understanding. A bonus of
this more comprehensive approach is accessibility to a wider range of more realistic
applications of differential equations.

Principal Features of This Revision

This 5th edition is a comprehensive and wide-ranging revision.

In addition to fine-tuning the exposition (both text and graphics) in numerous
sections throughout the book, new applications have been inserted (including bio-
logical), and we have exploited throughout the new interactive computer technology
that is now available to students on devices ranging from desktop and laptop com-
puters to smart phones and graphing calculators. It also utilizes computer algebra
systems such as Mathematica, Maple, and MATLAB as well as online web sites
such as Wolfram|Alpha.

However, with a single exception of a new section inserted in Chapter 5 (noted
below), the classtested table of contents of the book remains unchanged. Therefore,
instructors’ notes and syllabi will not require revision to continue teaching with this
new edition.

A conspicuous feature of this edition is the insertion of about 80 new computer-
generated figures, many of them illustrating how interactive computer applications
with slider bars or touchpad controls can be used to change initial values or param-
eters in a differential equation, allowing the user to immediately see in real time the
resulting changes in the structure of its solutions.

Some illustrations of the various types of revision and updating exhibited in
this edition:

New Interactive Technology and Graphics New figures inserted through-
out illustrate the facility offered by modern computing technology platforms
for the user to interactively vary initial conditions and other parameters in
real time. Thus, using a mouse or touchpad, the initial point for an initial
value problem can be dragged to a new location, and the corresponding solu-
tion curve is automatically redrawn and dragged along with its initial point.
For instance, see the Sections 1.3 (page 28) application module and 3.1 (page
148). Using slider bars in an interactive graphic, the coefficients or other pa-
rameters in a linear system can be varied, and the corresponding changes in its
direction field and phase plane portrait are automatically shown; for instance,

vii
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Computing Features

see the application module for Section 5.3 (page 319). The number of terms
used from an infinite series solution of a differential equation can be varied,
and the resulting graphical change in the corresponding approximate solution
is shown immediately; see the Section 8.2 application module (page 516).

New Exposition In a number of sections, new text and graphics have been
inserted to enhance student understanding of the subject matter. For instance,
see the treatments of separable equations in Section 1.4 (page 30), linear equa-
tions in Section 1.5 (page 45), isolated critical points in Sections 6.1 (page
372) and 6.2 (page 383), and the new example in Section 9.6 (page 618)
showing a vibrating string with a momentary “flat spot.” Examples and ac-
companying graphics have been updated in Sections 2.4-2.6, 4.2, and 4.3 to
illustrate new graphing calculators.

New Content The single entirely new section for this edition is Section
5.3, which is devoted to the construction of a “gallery” of phase plane por-
traits illustrating all the possible geometric behaviors of solutions of the 2-
dimensional linear system X’ = Ax. In motivation and preparation for the
detailed study of eigenvalue-eigenvector methods in subsequent sections of
Chapter 5 (which then follow in the same order as in the previous edi-
tion), Section 5.3 shows how the particular arrangements of eigenvalues and
eigenvectors of the coefficient matrix A correspond to identifiable patterns—
“fingerprints,” so to speak—in the phase plane portrait of the system x' = Ax.
The resulting gallery is shown in the two pages of phase plane portraits that
comprise Figure 5.3.16 (pages 315-316) at the end of the section. The new 5.3
application module (on dynamic phase plane portraits, page 319) shows how
students can use interactive computer systems to “bring to life” this gallery, by
allowing initial conditions, eigenvalues, and even eigenvectors to vary in real
time. This dynamic approach is then illustrated with several new graphics in-
serted in the remainder of Chapter 5. Finally, for a new biological application,
see the application module for Section 6.4, which now includes a substan-
tial investigation (page 423) of the nonlinear FitzHugh-Nagumo equations in
neuroscience, which were introduced to model the behavior of neurons in the
nervous system.

The following features highlight the computing technology that distinguishes much
of our exposition.

Over 750 computer-generated figures show students vivid pictures of direction
fields, solution curves, and phase plane portraits that bring symbolic solutions
of differential equations to life.

About 45 application modules follow key sections throughout the text. Most
of these applications outline “technology neutral” investigations illustrating
the use of technical computing systems and seek to actively engage students
in the application of new technology.

A fresh numerical emphasis that is afforded by the early introduction of nu-
merical solution techniques in Chapter 2 (on mathematical models and nu-
merical methods). Here and in Chapter 4, where numerical techniques for
systems are treated, a concrete and tangible flavor is achieved by the inclu-
sion of numerical algorithms presented in parallel fashion for systems ranging
from graphing calculators to MATLAB.
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Mathematical modeling is a goal and constant motivation for the study of differen-
tial equations. To sample the range of applications in this text, take a look at the
following questions:

Organization and Content

What explains the commonly observed time lag between indoor and outdoor
daily temperature oscillations? (Section 1.5)

What makes the difference between doomsday and extinction in alligator pop-
ulations? (Section 2.1)

How do a unicycle and a twoaxle car react differently to road bumps? (Sec-
tions 3.7 and 5.4)

How can you predict the time of next perihelion passage of a newly observed
comet? (Section 4.3)

Why might an earthquake demolish one building and leave standing the one
next door? (Section 5.4)

What determines whether two species will live harmoniously together, or
whether competition will result in the extinction of one of them and the sur-
vival of the other? (Section 6.3)

Why and when does non-linearity lead to chaos in biological and mechanical
systems? (Section 6.5)

If a mass on a spring is periodically struck with a hammer, how does the
behavior of the mass depend on the frequency of the hammer blows? (Section
7.6)

Why are flagpoles hollow instead of solid? (Section 8.6)

What explains the difference in the sounds of a guitar, a xylophone, and drum?
(Sections 9.6, 10.2, and 10.4)

We have reshaped the usual approach and sequence of topics to accommodate new
technology and new perspectives. For instance:

After a precis of first-order equations in Chapter 1 (though with the cover-
age of certain traditional symbolic methods streamlined a bit), Chapter 2 of-
fers an early introduction to mathematical modeling, stability and qualitative
properties of differential equations, and numerical methods—a combination
of topics that frequently are dispersed later in an introductory course. Chapter
3 includes the standard methods of solution of linear differential equations of
higher order, particularly those with constant coefficients, and provides an es-
pecially wide range of applications involving simple mechanical systems and
electrical circuits; the chapter ends with an elementary treatment of endpoint
problems and eigenvalues.

Chapters 4 and 5 provide a flexible treatment of linear systems. Motivated
by current trends in science and engineering education and practice, Chap-
ter 4 offers an early, intuitive introduction to first-order systems, models, and
numerical approximation techniques. Chapter 5 begins with a self-contained
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treatment of the linear algebra that is needed, and then presents the eigenvalue
approach to linear systems. It includes a wide range of applications (ranging
from railway cars to earthquakes) of all the various cases of the eigenvalue
method. Section 5.5 includes a fairly extensive treatment of matrix exponen-
tials, which are exploited in Section 5.6 on nonhomogeneous linear systems.

o Chapter 6 on nonlinear systems and phenomena ranges from phase plane anal-
ysis to ecological and mechanical systems to a concluding section on chaos
and bifurcation in dynamical systems. Section 6.5 presents an elementary in-
troduction to such contemporary topics as period-doubling in biological and
mechanical systems, the pitchfork diagram, and the Lorenz strange attractor
(all illustrated with vivid computer graphics).

o Laplace transform methods (Chapter 7) and power series methods (Chapter 8)
follow the material on linear and nonlinear systems, but can be covered at any
earlier point (after Chapter 3) the instructor desires.

o Chapters 9 and 10 treat the applications of Fourier series, separation of vari-
ables, and Sturm-Liouville theory to partial differential equations and bound-
ary value problems. After the introduction of Fourier series, the three clas-
sical equations—the wave and heat equations and Laplace’s equation—are
discussed in the last three sections of Chapter 9. The eigenvalue methods of
Chapter 10 are developed sufficiently to include some rather significant and
realistic applications.

This book includes enough material appropriately arranged for different courses
varying in length from one quarter to two semesters. The briefer version Differen-
tial Equations: Computing and Modeling (0-321-81625-0) ends with Chapter 7 on
Laplace transform methods (and thus omits the material on power series methods,
Fourier series, separation of variables and partial differential equations).

Student and Instructor Resources

The answer section has been expanded considerably to increase its value as a learn-
ing aid. It now includes the answers to most odd-numbered problems plus a good
many even-numbered ones. The Instructor’s Solutions Manual (0-321-79701-
9) available at www.pearsonhighered.com/irc provides worked-out solutions
for most of the problems in the book, and the Student Solutions Manual (0-321-
79700-0) contains solutions for most of the odd-numbered problems. These manu-
als have been reworked extensively for this edition with improved explanations and
more details inserted in the solutions of many problems.

The approximately 45 application modules in the text contain additional prob-
lem and project material designed largely to engage students in the exploration
and application of computational technology. These investigations are expanded
considerably in the Applications Manual (0-321-79704-3) that accompanies the
text and supplements it with additional and sometimes more challenging investi-
gations. Each section in this manual has parallel subsections Using Maple, Using
Mathematica, and Using MATLAB that detail the applicable methods and tech-
niques of each system, and will afford student users an opportunity to compare the
merits and styles of different computational systems. These materials—as well as
the text of the Applications Manual itself—are freely available at the web site
www.pearsonhighered.com/mathstatsresources.
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First-Order

Differential Equations

B} Differential Equations and Mathematical Models

he laws of the universe are written in the language of mathematics. Algebra

is sufficient to solve many static problems, but the most interesting natural
phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx/dt = f’(¢) of the function f is the rate at which
the quantity x = f(¢z) is changing with respect to the independent variable ¢, it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

PETHTIEEN The differential equation

dx

m =x2 412
involves both the unknown function x (¢) and its first derivative x’(¢) = dx/dt. The differential
equation
d?y .dy
d? + 3% + 7y =0
involves the unknown function y of the independent variable x and the first two derivatives
y" and y” of y. [ |

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation.

3. To interpret the solution that is found.

In algebra, we typically seek the unknown numbers that satisfy an equation
such as x3 4+ 7x2 — 11x + 41 = 0. By contrast, in solving a differential equation, we

1



2 Chapter 1 First-Order Differential Equations

Temperature A

Temperature T

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 4

are challenged to find the unknown functions y = y(x) for which an identity such
as y’(x) = 2xy(x)—that is, the differential equation

dy
R )
dx *y

—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

If C is a constant and
y(x) = Ce¥, (1)

then

dy X2\ _ %2\ _

i C (2xe ) = (2x) (Ce ) = 2xy.
Thus every function y(x) of the form in Eq. (1) satisfies—and thus is a solution of—the
differential equation

I Xy 2)

for all x. In particular, Eq. (1) defines an infinite family of different solutions of this differen-
tial equation, one for each choice of the arbitrary constant C. By the method of separation of
variables (Section 1.4) it can be shown that every solution of the differential equation in (2)
is of the form in Eq. (1). |

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time ¢, but we will see numerous examples in which some quantity other
than time is the independent variable.

Newton’s law of cooling may be stated in this way: The time rate of change (the rate of
change with respect to time #) of the temperature 7 (¢) of a body is proportional to the differ-
ence between 7 and the temperature A of the surrounding medium (Fig. 1.1.1). That is,

dT
i k(T — A), 3)
where k is a positive constant. Observe that if 7 > A, then d T/dt < 0, so the temperature is
a decreasing function of ¢ and the body is cooling. But if 7" < A, then dT/dt > 0, so that T
is increasing.
Thus the physical law is translated into a differential equation. If we are given the
values of k and A, we should be able to find an explicit formula for 7'(z), and then—with the
aid of this formula—we can predict the future temperature of the body. |

Torricelli’s law implies that the time rate of change of the volume V' of water in a draining
tank (Fig. 1.1.2) is proportional to the square root of the depth y of water in the tank:

dv
=k, 0)

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional area A,
then V = Ay, sodV/dt = A - (dy/dt). In this case Eq. (4) takes the form

dy
=7 5)

where h = k/A is a constant. |



FIGURE 1.1.2. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 6

FIGURE 1.1.3. Graphs of
P(t) = Cek! with k =n2.

1.1 Differential Equations and Mathematical Models 3

The time rate of change of a population P(¢) with constant birth and death rates is, in many
simple cases, proportional to the size of the population. That is,

ar
dr

where k is the constant of proportionality. |

kP, (6)

Let us discuss Example 5 further. Note first that each function of the form
P(t) = CeX? (7
is a solution of the differential equation

dP_
dr

in (6). We verify this assertion as follows:

kP

P'(t) = Ckek' =k (Cek’) — kP(1)

for all real numbers ¢. Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).
Thus, even if the value of the constant k is known, the differential equation
dP/dt = kP has infinitely many different solutions of the form P (z) = Ce¥?, one for
each choice of the “arbitrary” constant C. This is typical of differential equations.
It is also fortunate, because it may allow us to use additional information to select
from among all these solutions a particular one that fits the situation under study.

Suppose that P(1) = Ce¥? is the population of a colony of bacteria at time 7, that the pop-
ulation at time ¢ = 0 (hours, h) was 1000, and that the population doubled after 1 h. This
additional information about P (¢) yields the following equations:

1000 = P(0) = Ce® = C,
2000 = P(1) = Ce.

It follows that C = 1000 and that ek = 2,0k =1In2 =~ 0.693147. With this value of k the
differential equation in (6) is

dP
i (In2)P ~ (0.693147) P.

Substitution of k = In2 and C = 1000 in Eq. (7) yields the particular solution
P(t) = 1000eM2? — 1000(e!2)! = 1000-2"  (because e"2 = 2)

that satisfies the given conditions. We can use this particular solution to predict future popu-
lations of the bacteria colony. For instance, the predicted number of bacteria in the population
after one and a half hours (when 1 = 1.5) is

P(1.5) = 1000 - 2%/% ~ 2828. [ ]

The condition P (0) = 1000 in Example 6 is called an initial condition because
we frequently write differential equations for which # = 0 is the “starting time.”
Figure 1.1.3 shows several different graphs of the form P(¢) = Cek* with k = In2.
The graphs of all the infinitely many solutions of dP/dt = kP in fact fill the entire
two-dimensional plane, and no two intersect. Moreover, the selection of any one
point Py on the P-axis amounts to a determination of P(0). Because exactly one
solution passes through each such point, we see in this case that an initial condition
P(0) = Py determines a unique solution agreeing with the given data.
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Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original
real-world situation—for example, answering the question originally posed.

Real-world
situation

Formulation Interpretation

Mathematical
results

Mathematical
model

Mathematical
analysis

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari-
ables (P and ¢) that describe the given situation, together with one or more equations
relating these variables (dP/dt = kP, P(0) = Py) that are known or are assumed to
hold. The mathematical analysis consists of solving these equations (here, for P as
a function of ¢). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

As an example of this process, think of first formulating the mathematical
model consisting of the equations dP/dt = kP, P(0) = 1000, describing the bac-
teria population of Example 6. Then our mathematical analysis there consisted of
solving for the solution function P(¢) = 1000e/2?* = 1000 - 2 as our mathemat-
ical result. For an interpretation in terms of our real-world situation—the actual
bacteria population—we substituted ¢ = 1.5 to obtain the predicted population of
P(1.5) ~ 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is
growing under ideal conditions of unlimited space and food supply, our prediction
may be quite accurate, in which case we conclude that the mathematical model is
adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential
equation accurately fits the actual population we’re studying. For instance, for no
choice of the constants C and k does the solution P(t) = Ce** in Eq. (7) accurately
describe the actual growth of the human population of the world over the past few
centuries. We must conclude that the differential equation dP/dt = k P is inadequate
for modeling the world population—which in recent decades has “leveled oft” as
compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.
With sufficient insight, we might formulate a new mathematical model including
a perhaps more complicated differential equation, one that takes into account such
factors as a limited food supply and the effect of increased population on birth and
death rates. With the formulation of this new mathematical model, we may attempt
to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If
we can solve the new differential equation, we get new solution functions to com-



Example 7

Example 8

Solution

1.1 Differential Equations and Mathematical Models  §

pare with the real-world population. Indeed, a successful population analysis may
require refining the mathematical model still further as it is repeatedly measured
against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af-
fect our bacteria population. This made the mathematical analysis quite simple,
perhaps unrealistically so. A satisfactory mathematical model is subject to two con-
tradictory requirements: It must be sufficiently detailed to represent the real-world
situation with relative accuracy, yet it must be sufficiently simple to make the math-
ematical analysis practical. If the model is so detailed that it fully represents the
physical situation, then the mathematical analysis may be too difficult to carry out.
If the model is too simple, the results may be so inaccurate as to be useless. Thus
there is an inevitable tradeoff between what is physically realistic and what is math-
ematically possible. The construction of a model that adequately bridges this gap
between realism and feasibility is therefore the most crucial and delicate step in
the process. Ways must be found to simplify the model mathematically without
sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of
this introductory section is devoted to simple examples and to standard terminology
used in discussing differential equations and their solutions.

Examples and Terminology

If C is a constant and y(x) = 1/(C — x), then

y_ 1 _
dx (C—x2 ”?
if x # C. Thus
= 8
Yo = (®)
defines a solution of the differential equation
d
=y ©)

dx
on any interval of real numbers not containing the point x = C. Actually, Eq. (8) defines a

one-parameter family of solutions of dy/dx = y?, one for each value of the arbitrary constant
or “parameter” C. With C = 1 we get the particular solution

1

y(x) = 1—x
that satisfies the initial condition y(0) = 1. As indicated in Fig. 1.1.5, this solution is contin-
uous on the interval (—oo, 1) but has a vertical asymptote at x = 1. |
Verify that the function y(x) = 2x1/2 — x1/21n x satisfies the differential equation

4x%y" +y =0 (10)
for all x > 0.
First we compute the derivatives

Y (x) = —%x_l/Z Inx and y"(x)= %x_3/2 Inx — %x_3/2.

Then substitution into Eq. (10) yields
4x2y" 4+ y = 4x? (%x—3/2 Inx — %x_3/2) +2x/2_x2nx =0

if x is positive, so the differential equation is satisfied for all x > 0. |
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y=1/(1-x)

0, D),

-5

-5 0 5
X

FIGURE 1.1.5. The solution of
y’ = y2 defined by y(x) = 1/(1 — x).

Example 7

Continued

Example 9

The fact that we can write a differential equation is not enough to guarantee
that it has a solution. For example, it is clear that the differential equation

O+ =-1 Y

has no (real-valued) solution, because the sum of nonnegative numbers cannot be
negative. For a variation on this theme, note that the equation

O +»2=0 12)

obviously has only the (real-valued) solution y(x) = 0. In our previous examples
any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that
appears in it. The differential equation of Example 8 is of second order, those in
Examples 2 through 7 are first-order equations, and

y(4) + xzy(3) + x°y =sinx

is a fourth-order equation. The most general form of an nth-order differential
equation with independent variable x and unknown function or dependent variable
y =yX)is

F(x,y,y’,y”,...,y(")) =0, (13)

where F is a specific real-valued function of n 4 2 variables.

Our use of the word solution has been until now somewhat informal. To be
precise, we say that the continuous function v = u(x) is a solution of the differential
equation in (13) on the interval / provided that the derivatives u’, u”, . . ., u® exist
on / and

F(x,u,u’,u”,...,u(")) =0

for all x in /. For the sake of brevity, we may say that u = u(x) satisfies the
differential equation in (13) on /.

Remark Recall from elementary calculus that a differentiable function on an open interval
is necessarily continuous there. This is why only a continuous function can qualify as a
(differentiable) solution of a differential equation on an interval. |

Figure 1.1.5 shows the two “connected” branches of the graph y = 1/(1 — x). The left-hand
branch is the graph of a (continuous) solution of the differential equation y’ = y? that is
defined on the interval (—oo, 1). The right-hand branch is the graph of a different solution of
the differential equation that is defined (and continuous) on the different interval (1, c0). So
the single formula y(x) = 1/(1 — x) actually defines two different solutions (with different
domains of definition) of the same differential equation y’ = y2. |

If A and B are constants and
y(x) = Acos3x + Bsin3x, (14)
then two successive differentiations yield

y'(x) = —3Asin3x + 3B cos 3x,
y"(x) = =94 cos3x — 9B sin3x = —9y(x)

for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter family of
solutions of the second-order differential equation

Y +9y =0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such solutions. M
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FIGURE 1.1.6. The three solutions
y1(x) = 3cos3x, yo(x) = 2sin3x,
and y3(x) = —3cos 3x + 2sin3x of
the differential equation y” + 9y = 0.

Example 10
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Although the differential equations in (11) and (12) are exceptions to the gen-
eral rule, we will see that an nth-order differential equation ordinarily has an n-
parameter family of solutions—one involving n different arbitrary constants or pa-
rameters.

In both Egs. (11) and (12), the appearance of y’ as an implicitly defined func-
tion causes complications. For this reason, we will ordinarily assume that any dif-
ferential equation under study can be solved explicitly for the highest derivative that
appears; that is, that the equation can be written in the so-called normal form

y(”) =G (x, vy oy y("_l)) , (16)

where G is a real-valued function of n + 1 variables. In addition, we will always
seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ-
ential equations, meaning that the unknown function (dependent variable) depends
on only a single independent variable. If the dependent variable is a function of
two or more independent variables, then partial derivatives are likely to be involved;
if they are, the equation is called a partial differential equation. For example, the
temperature u = u(x, ) of a long thin uniform rod at the point x at time ¢ satisfies
(under appropriate simple conditions) the partial differential equation

ou . 02u
ar 9x2’

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1
through 8 we will be concerned only with ordinary differential equations and will
refer to them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

Y= f). (17
X

We also will sample the wide range of applications of such equations. A typical
mathematical model of an applied situation will be an initial value problem, con-
sisting of a differential equation of the form in (17) together with an initial condi-
tion y(x¢) = yo. Note that we call y(xg) = yo an initial condition whether or not
xo = 0. To solve the initial value problem

d
> = ). v =y (1s)
X
means to find a differentiable function y = y(x) that satisfies both conditions in
Eq. (18) on some interval containing x.

Given the solution y(x) = 1/(C — x) of the differential equation dy/dx = y? discussed in
Example 7, solve the initial value problem

dy 2
L= y2, 1) =2.
it y(1)

We need only find a value of C so that the solution y(x) = 1/(C — x) satisfies the initial
condition y(1) = 2. Substitution of the values x = 1 and y = 2 in the given solution yields

1
2=y() = ﬁ
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5 s02C —2 =1, and hence C = % With this value of C we obtain the desired solution
- 1 2
y=2/(3 - 2x) ) =5— = T
(1,12) 2 X -
x=32 Figure 1.1.7 shows the two branches of the graph y = 2/(3 — 2x). The left-hand branch is

- )F——

the graph on (—oo, %) of the solution of the given initial value problem y’ = y2, y(1) = 2.
The right-hand branch passes through the point (2, —2) and is therefore the graph on (%, 00)

2,-2 . . C
@2 of the solution of the different initial value problem y’ = y2, y(2) = —2. |

The central question of greatest immediate interest to us is this: If we are given
-5 a differential equation known to have a solution satisfying a given initial condition,
=5 0 5 .

x how do we actually find or compute that solution? And, once found, what can we do
with it? We will see that a relatively few simple techniques—separation of variables
(Section 1.4), solution of linear equations (Section 1.5), elementary substitution
methods (Section 1.6)—are enough to enable us to solve a variety of first-order

FIGURE 1.1.7. The solutions of
¥’ = y2 defined by
y(x) = 2/(3 —2x).

equations having impressive applications.

m Problems

In Problems 1 through 12, verify by substitution that each
given function is a solution of the given differential equation.
Throughout these problems, primes denote derivatives with re-
spect to x.

Ly =3x2y=x3+7

2.y 42y =0;y =3¢

3. " +4y =0; y; = cos2x, yp = sin2x

4. y" =9y y1 =, yp =

5.y =y+42eFy=e—e*

6. Y +4y +4dy =0;y1 = e 2%, yp = xe ¥

7.y =2y +2y =0; y; = e*cosx, yp = e~ sinx

8. y"+y=3c0s2x, y; =c0sx —cos2x, yp = sin x —c0s 2x
! 2 0y —

9. y' +2xy —O,y—l_|_7x2

10. x2y" +xy' —y=Inx; y; =x—Inx, y» = %—lnx

1 Inx
11. x2y" +5xy" +4y =0; y1 = 2=

12. x2y” —xy’ +2y =0; y; = xcos(Inx), yo = x sin(In x)
In Problems 13 through 16, substitute y = ™™ into the given

differential equation to determine all values of the constant r
for which y = e"* is a solution of the equation.

14. 49" =y
16. 3y" +3y' —4y =0

13. 3y’ =2y
15. y" +y' =2y =0

In Problems 17 through 26, first verify that y(x) satisfies the
given differential equation. Then determine a value of the con-
stant C so that y(x) satisfies the given initial condition. Use a
computer or graphing calculator (if desired) to sketch several
typical solutions of the given differential equation, and high-
light the one that satisfies the given initial condition.

17. y' +y =0, y(x) = Ce™, y(0) =2
18. ' =2y; y(x) = Ce?*, y(0) =3
19. yy =y + 1L, y(x) =Ce*—1,y(0) =5

20. y =x—y;y(x)=Ce ¥ +x—1,y(0) =10
21,y +3x2y =0; y(x) = Ce ™, y(0) =7
22. ¢¥y' =1;y(x) =In(x + C), y(0) =0

d
23. xd—y +3y =2x% y(x) = %xs +Cx7 3,y =1
X

24. xy' =3y = x3; y(x) = x3(C + Inx), y(1) =17
25. y' =3x2(»2 4+ 1); y(x) = tan(x3 + C), y(0) = 1
26. y' + ytanx = cosx; y(x) = (x + C)cosx, y(x) =0

In Problems 27 through 31, a function y = g(x) is described
by some geometric property of its graph. Write a differential
equation of the form dy/dx = f(x, y) having the function g as
its solution (or as one of its solutions).

27. The slope of the graph of g at the point (x, y) is the sum
of x and y.

28. The line tangent to the graph of g at the point (x, y) inter-
sects the x-axis at the point (x/2, 0).

29. Every straight line normal to the graph of g passes through
the point (0, 1). Can you guess what the graph of such a
function g might look like?

30. The graph of g is normal to every curve of the form
y = x2 + k (k is a constant) where they meet.

31. The line tangent to the graph of g at (x, y) passes through
the point (—y, x).

In Problems 32 through 36, write—in the manner of Egs. (3)
through (6) of this section—a differential equation that is a
mathematical model of the situation described.

32. The time rate of change of a population P is proportional
to the square root of P.

33. The time rate of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. The acceleration dv/dt of a Lamborghini is proportional
to the difference between 250 km/h and the velocity of the
car.



1.1 Differential Equations and Mathematical Models 9

35. In a city having a fixed population of P persons, the time
rate of change of the number N of those persons who have
heard a certain rumor is proportional to the number of
those who have not yet heard the rumor.

36. In acity with a fixed population of P persons, the time rate
of change of the number N of those persons infected with
a certain contagious disease is proportional to the product
of the number who have the disease and the number who
do not.

In Problems 37 through 42, determine by inspection at least
one solution of the given differential equation. That is, use
your knowledge of derivatives to make an intelligent guess.
Then test your hypothesis.

37. y" =0 38. y/=y
39. xy' 4+ y =3x2 40. ()2 +y2=1
41. y' +y =€~ 2. 9" +y=0

Problems 43 through 46 concern the differential equation

dx
= = kx2,
a7

where k is a constant.

43. (a) If k is a constant, show that a general (one-parameter)
solution of the differential equation is given by x(¢) =
1/(C — kt), where C is an arbitrary constant.
(b) Determine by inspection a solution of the initial value
problem x” = kx?2, x(0) = 0.
44. (a) Assume that k is positive, and then sketch graphs of
solutions of x’ = kx? with several typical positive
values of x(0).
(b) How would these solutions differ if the constant k
were negative?
45. Suppose a population P of rodents satisfies the differen-
tial equation dP/dt = kP?2. Initially, there are P(0) = 2

3C=—2 C=-1C=0 C=1C=2 C=3
T T

= 0
C=-4
-1
-2
3 | | | |
23 20 -1 oI 2N\ 3
Cc=0C=1C=2

C=-3C=-2C=-1
X

FIGURE 1.1.8. Graphs of solutions of the
equation dy/dx = y2.

46.

47.

48.

rodents, and their number is increasing at the rate of
dP/dt = 1 rodent per month when there are P = 10 ro-
dents. Based on the result of Problem 43, how long will it
take for this population to grow to a hundred rodents? To
a thousand? What’s happening here?

Suppose the velocity v of a motorboat coasting in water
satisfies the differential equation dv/dt = kv2. The ini-
tial speed of the motorboat is v(0) = 10 meters per sec-
ond (m/s), and v is decreasing at the rate of 1 m/s> when
v = 5 m/s. Based on the result of Problem 43, long does
it take for the velocity of the boat to decrease to 1 m/s? To
%m/s? When does the boat come to a stop?

In Example 7 we saw that y(x) = 1/(C — x) defines a
one-parameter family of solutions of the differential equa-
tion dy/dx = y?. (a) Determine a value of C so that
y(10) = 10. (b) Is there a value of C such that y(0) = 0?
Can you nevertheless find by inspection a solution of
dy/dx = y? such that y(0) = 0? (c) Figure 1.1.8 shows
typical graphs of solutions of the form y(x) = 1/(C — x).
Does it appear that these solution curves fill the entire xy-
plane? Can you conclude that, given any point (a,b) in
the plane, the differential equation dy/dx = y? has ex-
actly one solution y(x) satisfying the condition y(a) = b?
(a) Show that y(x) = Cx* defines a one-parameter fam-
ily of differentiable solutions of the differential equation
xy’ = 4y (Fig. 1.1.9). (b) Show that

(x) = —x* ifx <0,
Y=Y 4 ifxzo0

defines a differentiable solution of xy” = 4y for all x, but is
not of the form y(x) = Cx*. (c) Given any two real num-
bers a and b, explain why—in contrast to the situation in
part (c) of Problem 47—there exist infinitely many differ-
entiable solutions of xy’ = 4y that all satisfy the condition

y(a) =b.

100

—60 - |

-80 -

U S R
X

2 345

FIGURE 1.1.9. The graph y = Cx* for
various values of C.





